What do respondents think of doing an implicit reaction time test?

We always like to finish a survey by asking respondents their experiences of taking a test. These are the themes that come from their responses.

1. Fun and engaging

“Fun to do”, “send me more”, “loved it”, “excellent”, “entertaining and friendly”, “a good experience”, “cool and enjoyable”, “interactive, “innovative”, “unique”, “a nice twist”, “like playing a game”, “aroused my curiosity”.

When respondents find a survey inetresting and engaging, they are more likely to offer their true feelings.

2. Better than taditional surveys

“Not too wordy”, “less overwhelming and tiring”, “better than most surveys”, “better than multiple-choice questions”, “doesn’t beat about the bush”, “not too long”, “unlike open-ended questions, which are hard”.

Traditional surveys can be very lengthy and demanding, and hence less engaging.

3. I don’t understand how it works

“I didn’t understand the purpose”, “I don’t understand what it does”, “what was the point?”.

When respondents can’t work out exactly what you are asking, they have no incentive or opportunity to fake their responses.

4. It was quick

“It was very fast”, “not too long”, “reasonable length”, “easy to do”, “not difficult”, “short and sweet”, “more like this please”.

Implicit reaction time tests are quick and easy to do. This makes them easier to recruit respondents than lengthier, traditional surveys.

 

Getting insights from data – getting to the “why?”

When you ask consumers about your products, make sure you are using the correct research method.

You may have read about the now famous story of Herman Miller’s Aeron office chair. He developed the chair through the cycle of development, market research, more development, more market research, and so on. Finally, deciding on the design we see now. His research focussed on asking consumers two questions (1) please rate the chair on comfort and (2) please rate the chair on aesthetics. His plan was to use the design which received the highest ratings on both. The trouble was that any design he created got very low ratings on both, even though in his mind he thought he had designed the perfect office chair. Notwithstanding this poor consumer feedback, he went to market…and it became the top selling office chair!

The moral of the story? When you ask someone to rate something new, if it is not simple and obvious or they really can’t verbalise how they feel, they will say they don’t like it. Often consumers will choose the least sophisticated option when they are forced to say why they like it.

The psychologist Tim Wilson has carried out a lot of research showing that when people say they actually like something they often make up a story – an explanation that has no resemblance to reality (in a typical experiment it is the manipulation that determined the liking rather than the story the participant made up). Infact, Tim Wilson has shown that people actually have very poor insights into their own inner worlds – he argues that we are strangers to ourselves.

Consumer Insights – Beyond Liking

To yield more effective consumer insights, we need to go beyond what is immediately visible and dig deeper. We need to examine why the consumer is doing what they are doing in their own world. Insights that are fresh, true, targeted and actionable are those we need to develop.

Split Second’s Implicit research methods go beyond liking. They seek to ask why a consumer prefers this brand, product, or packaging rather than that brand, product or packaging. It can tell us why and how one piece of advertising creative will work on one target audience but not another demographic. Split second’s implicit conusmer testing is able to characterise the feelings the consumer has towards the products, going much deeper than simple liking and disliking. The method is very consumer focussed and bypasses those biases that can influence verbal responses. Split second’s implicit tests are very difficult to fake, hence they provide a pure read-out of consumers’ feelings.

New product development should be cyclical: design the concept, test the market, design the prototype, test the market, develop several design options and test the market. Before implicit technology, this was a slow process, but now with the aid of our IMPRESS platform this product development cycle becomes a reality. We can turn around results in 48 hours, so your development team can get on with the business of optimising the product.

Get your implicit research done in a split second with the IMPRESS Platform

Split Second Research announces its new IMPRESS Platform for the creation and instant analysis of implicit reaction time tests.

Ask us to create your test for you OR do it yourself – and get the results of your market research in 48 hours.

The IMPRESS platform is used for creating implicit reaction time tests in market research and for other research areas too, such as voting preferences, and social attitudes like racial bias, gender bias, and so on.  Online, objective and cost-effective, implicit tests capture immediate, and intuitive responses to brands, packaging, product claims, advertising evaluation, brand tracking, brand positioning, new product development, and a vast array of other marketing related outputs.

IMPRESS is a platform for creating an implicit reaction time test quickly and effortlessly.

It is easy to create a test, either from scratch or by duplicating an existing project.

You can also create traditional survey-type questions. This is useful if you want to add your own screener or demographics questions. Choose from a range of question types and capture information about your respondents and their buying habits before they take the test.

Analysis can be carried out instantly.

Split Second Research offers a free training session to a technician or the main admin user at your institution or company.

The system comes with an online user manual and we offer email support with a maximum 48 hour response time.

Get your implicit research done in a split second

 

Neuropricing and Price Promotions

Dr Implicit gave a sprightly performance at the Shopper Brain Conference in Amsterdam recently. The focus was on how in-store promotions can often adversely affect a brand, especially in terms of how the brand is perceived. This can have a long-term effect on a brand’s health, especially its brand equity. The research found that for most products, a price promotion can adversely affect the brand’s perception of quality. In other words, it may ‘cheapen’ the brand, which is not good for category leaders and those for whom quality is marketed as a brand value. For other kinds of products, attributes reflecting social influence, such as popular, trendy, modern, were affected negatively, and indeed in some cases ’embarrassed’ was triggered by the promotion. Taken together, these suggest that offers can make a brand lose out on appearing to be the most popular brand; consumers may even feel a sense of embarrassment when buying such products when they are on offer.

For some other types of products brands went unscathed. Indeed, some offers can make consumers feel proud to be loyal to the brand, welcoming the offer as a reward and an opportunity for others to appreciate the brand as they do.  So, the research uncovered mixed findings, and some types of offers, such as strike-though pricing (i.e., £1.50  now £1.00) worked better than others, such as offers based on quantity like BOGOF (buy one get one free).

This research is ongoing and there are many more research questions that need to be addressed, such as, the effects of other types of offers (Special Offer, and Win a prize), a broader range of product verticals, necessities versus luxury items, the colours and fonts associated with different types of offers, seasonal offers, and much more. Keep checking this website for news about this research.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dr Implicit reveals all !!

Update: January 2018

Further analysis has been carried out. If you want to receive a report of this research please get in touch. The brands we assessed were Activia Yoghurt, Philadelphia Soft Cheese, Tropicana Fruit Juice, Heinz Baked Beans, Fairy Washing Powder, and Tresseme Shampoo.

Split Second Research Announces its New IMPULSE Test

Split Second Research’s IMPULSE test is an implicit test for analysing audio-visual content, such as TV adverts, radio adverts, movie trailers, programme excerpts, online videos, promotional videos, training videos, political speeches, and so on. It provides a moment-to-moment analysis of emotional reactions to the content. IMPULSE can read up to six different emotions during the same test.

A typical output is shown in the embedded link below. You can play, pause, rewind, restart at any time so that you can examine the emotional reactions to the video on a moment-by-moment basis. These are completely implicit reactions to the content. In the example, below six emotional responses are shown to a video of a gorilla spinning around in a pool at Dallas Zoo (video courtesy of Dallas Zoo & BBC News).



Click on the image to view the analysis (this will open in a new window).

American Chamber of Commerce in Singapore

Talking at AmCham

Dr. Eamon Fulcher presented at the American Chamber of Commerce in Singapore in May. The focus of his talk was on future developments in neuromarketing and new implicit reaction time techniques.

10 Reasons for using an implicit survey

How it works

This post also answers the related questions and issues that we are often asked:

10 reasons for using an implicit reaction time survey.

10 reasons for using an implicit association test (IAT) in consumer research.

10 reasons not to solely rely on a traditional survey.

  1. Traditional surveys don’t always have a very good way of measuring what is in consumers’ hearts.
  2. Implicit surveys get right at consumers’ hearts. It’s exactly what the method is all about.
  3. People often tell you what they think you want them to hear in a traditional survey.
  4. In an implicit reaction time survey, people don’t explicitly tell you how they feel, they reveal it to you in their reaction times.
  5. People often fail to make real discriminations in a traditional survey, hence all values converge around the average score.
  6. In an implicit survey people cannot influence their scores (they can’t play the game to influence the results). Hence they make highly discriminating responses, and we often get very distinctive profiles of a brand/pack/advert and so on.
  7. A traditional survey can often tell you which product or brand is most liked but not why.
  8. An implicit survey not only reveals the best product, pack, brand, advert, and so on, it can tell you why because it will use 20 to 40 attributes and these are typically highly discriminating. The attributes provide you with a detailed profile of each brand/item.
  9. In a traditional survey, people often can’t verbalise how they feel but they are required to answer anyway.
  10. In an implicit survey, people don’t make evaluative judgements, they just try to press the correct keys and so allowing inferences to be made about how they feel – it captures their inner feelings.

Take the Dads4Daughters Test

Implicit Gender Bias Test

Split Second Research sponsors the Dads4Daughters campaign in collaboration with Blinc Partnership and St Paul’s Girls’ School.

Take the Dads4Daughters Test – How gender biased are you? Click the logo below to take the implicit gender bias test:

The test has been featured in:

If your company took part in the test and you would like to have your company’s results, please contact us via info@splitsecondresearch.co.uk or +44 (0) 7878455944

The Dads4Daughters Test is based on a commercial test designed to measure attitudes towards brands, TV adverts, and other marketing materials. These attitudes are measured implicitly, that is, they are inferred from reaction times to words images presented on the screen. The test bypasses the need to ask explicitly about someone’s views or attitudes. This is important because often what people say they will do or what they tell you about how they feel is often at odds with how they behave!  Furthermore, in difficult issues such as sexism or racism, people may be reluctant to tell you how they truly feel and in some cases they may even hold certain attitudes that they are unaware of until they are provoked.

The commercial test is itself based on the evaluative priming paradigm in academic research (e.g., Fazio, et al., 1986)1. The first phase of the test is to detect target emotion words as belonging to either one category (e.g., Happy) or another (e.g., Sad).  In the second phase, the task is the same but the target emotion words are preceded very briefly by ‘primes’. These primes are either congruent with the target word (the prime is Joy when the target is Happy, or the prime is Gloomy when the target is Sad) or incongruent (the prime is Gloomy when the target is Happy, or the prime is Joy when the target is Sad). The task can be performed quicker and with fewer errors when the prime and the target are congruent than when the prime and the target are incongruent.

In the Dads4Daughters version of the implicit gender bias test, the targets were female and male words, such as She and He. Primes were 24 words related to professions, roles, personal qualities, or career fields (e.g., engineering, manager, leader, and so on). Trials are divided into female trials (where the target is a female word that invites a specific response, e.g., press D on the keyboard or swipe left) and male trials (where the target is a male word that invites a different response, e.g., press K on the keyboard or swipe right). The logic is: if the test-taker subconsciously associates a career field (e.g., engineering) as being male, then they will be quicker to detect the male target on ‘male’ trials than the female target on ‘female’ trials when the prime is engineering.

About 10,000 people have taken the test and from all walks of life (from bus drivers to CEOs).

Note that the test does not require an explicit evaluative judgement, there is always a correct answer on each trial. Also, people often think they can out-game the test – but in fact there is no way to ‘play’ the system because the task is always the same – it is a test that is difficult to fake. The way the test measures an attitude is not to do with accuracy or generally how fast the response is, but through a comparison of reaction times. So, the association between say, engineering, and the concept Female or Male is detected (or implied) by differences in reaction times to detect the female and male targets when they are both preceded by the same prime (engineering).

For each test-taker, the result is a measure of adherence to traditional views of gender roles – that some roles are associated with men and others with women. The more a test-taker associates skilled professions, or more senior roles, or more desirable personal qualities with men and not with women, then the stronger is their measure of gender bias.

If you would like your employees to take the test and you would like to know how they compare with other companies, please contact us via info@splitsecondresearch.co.uk

 

1Fazio, R. H., Sanbonmatsu, D. M., Powell, M. C., & Kardes, F. R. (1986). On the automatic activation of attitudes. Journal of Personality and Social Psychology, 50, 229–238. doi:10.1037/0022-3514.50.2.229

 

 

Split Second Research in the News!

Interview in Milan

Which is better the IAT or Affective Priming?

Comparison of two Implicit Association Tests

Affective Priming versus Implicit Association test

One criticism of the IAT is that it may merely tap ‘extrapersonal associations’ – it may be a measure of culturally shared assumptions rather than personal attitudes. For example, this would argue that an IAT that detects my strong association between nurse and female is just reflecting my knowledge that society has historically given the role mainly to women, rather than this being my own personal automated attitude (i.e., that nurses ought to be female).

Another criticism of the IAT is the reliance on the switching of blocks. In the first phase, (and in a hypothetical gender bias test), the word female is paired with gender stereotype attributes, e.g., nurse, and the word male with doctor. After the respondent has learned to do this quickly, the categories are then reversed, so that the word female is now paired with words incongruent with the gender stereotype, which make the test much more difficult all of a sudden. This yields significant reaction time differences in the second block – it is a harder task than the first block (not because of an inherent gender bias attitude, but because the respondent had already learned one set of responses, and has to unlearn them and re-learn the new responses in the second block). This is worrying because it means that the effect is prone to changes in procedural issues.

A further problem is that in the IAT, only two dichotomous concepts can be paired (e.g., men vs women, gender stereotypical vs not gender stereotypical), which can be very limiting when one wishes to explore their relationship in more detail. Consequently, the IAT produces a single global gender bias score. However, in affective priming one may have more than just a global score and attributes can be divided into dimensions. This would provide a more detailed picture of such a relationship. So for example, a gender bias test using affective priming will be based on a large number of ‘attributes’ and these can be categorised (e.g., roles, personal qualities, professions, and so on) and this kind of test produces a score for each dimension. Another statistical advantage of the affective priming approach is that one can conduct a factor analysis on the data to reveal how attributes are grouped (grouped spontaneously in the minds of the respondents who took the test). Hence it can yield groups of attributes that together are likely to represent an important feature of the concept begin measured (e.g., nurse, carer, ethical, reliable, hardworking, gentle, and female) – of course this example is too obvious and not so informative, but some patterns can emerge from this approach that weren’t predicted. This is much harder to do with the IAT.

Finally, the reasons why affective priming works is because it is based on assumptions that are highly compatible with what is known about how the brain processes information.  Neural network models of the brain are based on mental associations – the stronger the association between two concepts (e.g., female and nurse) the quicker one concept will mentally trigger the other. So that’s four reasons why affective priming is the preferred approach, particularly if you are looking to understand the complex processes in the mind of a consumer.

 

© 2018: SPLIT SECOND RESEARCH, All Rights Reserved | Developed by: Split Second Software Services Corporation